Hiding the Complexity: Building a Distributed ATLAS Tier-2 with a Single Resource Interface using ARC

Stuart Purdie, Graeme Stewart, Mike Kenyon, Sam Skipsey, Wahid Bhimji and Andrej Filipcic
Hang on a moment!

Aren't all the Tier-2's distributed?
• Fortunately, I can point to Ian Bird's talk from yesterday about caching models of data storage!
• Fortunately, I can point to Ian Bird's talk from yesterday about caching models of data storage!

• It's about how it is distributed
• Fortunately, I can point to Ian Bird's talk from yesterday about caching models of data storage!

• It's about *how* it is distributed
• It's about *how* the *data* is distributed
ATLAS gLite model

User

Pilot Factory

Panda

gLite CE

gLite CE

gLite CE

Hiding the complexity
ATLAS ARC model

User

Control Tower

Panda

ARC CE

ARC CE

ARC CE
• gLite jobs start running on the WN, then access data
 - Several options here; commonly job stages against DPM
• gLite jobs start running on the WN, then access data
 - Several options here; commonly job stages against DPM

• ARC stages all the data to a local cache before job start
 - Job accesses data locally
Tiers before bedtime

Few Tier 1's

One Tier 0

Hiding the complexity
Hiding the complexity

Tiers before bedtime

One Tier 0

Few Tier 1's

Many Tier 2's
Tiers under our model

Several Tier 2's

Few Tier 1's

One Tier 0

17/10/10

Hiding the complexity
Current Model

- Three compute clusters
- Storage at each cluster

17/10/10
Proposed Model

- Three compute clusters
- One Storage Element
 - Plus modest cache at each compute cluster
 - Cache no harder to maintain than home directories
What's the advantage?

- VO storage management complexity reduced
What's the advantage?

- VO storage management complexity reduced
- Easier to add in further (smaller) compute clusters
 - CE installation is easy
• Compute is:
• Data is:
Compute vs Data

• Compute is: cheap
• Data is:
• Compute is: cheap, idempotent
• Data is:
• **Compute** is: cheap, idempotent and fungible

• **Data** is:
Compute vs Data

- Compute is: cheap, idempotent and fungible
- Data isn't
Compute vs Data

- Compute is: cheap, idempotent and fungible
- Data isn't

- Moving compute jobs around is solved
- Data requirements is the hard, and expensive, part
Our situation

• ECDF - University wide compute cluster, on an internal changing basis, and administered centrally
• Has data facilitates, but not quite at the scale for Atlas use to peak efficiency
Our situation

- ECDF - University wide compute cluster, on an internal changing basis, and administered centrally
- Has data faciltiates, but not quite at the scale for Atlas use to peak efficiency
- Glasgow - Pure Grid cluster, plenty of data (1.4PB)
- It would be really, really, nice to be able to use Edinburgh as compute, backed by data at glasgow
Our situation

- ECDF - University wide compute cluster, on an internal changing basis, and administered centrally
- Has data facilitates, but not quite at the scale for Atlas use to peak efficiency
- Glasgow - Pure Grid cluster, plenty of data (1.4PB)
- It would be really, really, nice to be able to use Edinburgh as compute, backed by data at glasgow
- Site: Simpler to run - and would mean we could pick up smaller compute clusters too
- VO: Simpler to administer, simpler to use
Early Attempts

• When the Grid was young, we tried this
• Had data at Glasgow, and marked it as a close SE to Edinburgh
• Crippled by the transfer times
• Got to the level of looking at the costs of putting in a dedicated lightpath ...
• Not cheaper!
What's changed?

• ARC handles data differently
• Pre-stages to a local cache before job execution
 - Cache is managed by the computer
• Therefore less sensitive to distance between data store and compute cluster
What's the plan again?

- Three sites collectively make up a Tier-2
- Tricky to have enough data at each for optimal usage
 - In particular for smaller additional sites
- ARC's cache allows for one data store to be shared
- Aim to consolidate the data stores
Does it work?

- Step one was to install ARC at Glasgow, and join it to the NorduGrid Cloud for Panda work.
- More extreme than the long term plan; a good test environment.
Does it work?

- Step one was to install ARC at Glasgow, and join it the the NorduGrid Cloud for Panda work
- More extreme than the long term plan; a good test environment
- 13k jobs completed
- Prestaging from NDGF storage works well
- CPU efficiency is good
Step one was to install ARC at Glasgow, and join it the NorduGrid Cloud for Panda work.

More extreme than the long term plan; a good test environment.

13k jobs completed.

Prestaging from NDGF storage works well.

CPU efficiency is good.

Cache maintenance required thus far: 0.
What didn't go so well?

• A/A system integration
 - X509 certificates work fine, but LCMAPS integration had linking issues due to bitness concerns
What didn't go so well?

• A/A system integration
 - X509 certificates work fine, but LCMAPS integration had linking issues due to bitness concerns

• Different interface for job submission + management
 - Already used in ATLAS, so trivial in this case
Net Benefits / Challenges

- Simpler data distribution model for users
- Smaller sites relived of the storage upgrade treadmill
- Last mile of data storage is automated
- Usable now

- Different submission and control interfaces
Thank you