User Analysis of LHCb Data with Ganga

CHEP 2009
Prague March 23-27
Andrew Maier (CERN/IT) for the Ganga Team
Overview

- Ganga Introduction
- Ganga user statistics in LHCb
- Performing an analysis in LHCb
 - Data selection
 - Application configuration
 - Job submission
Ganga Talks at CHEP 2009

This is a part of a series of talks and posters on Ganga

General Ganga presentation

D. van der Ster: Ganga: User-friendly Grid job submission and management tool for LHC and beyond

Ganga in ATLAS

J. Elmsheuser: Distributed Analysis in ATLAS using GANGA

Ganga in LHCb

[312] User analysis of LHCb data with Ganga

Functional testing using Ganga

D. van der Ster: Functional and Large-Scale Testing of the ATLAS Distributed Analysis Facilities with Ganga

Poster

D. van der Ster: A PanDA Backend for the Ganga Analysis Interface
What is Ganga?

- Started as an ATLAS/LHCb project
- Ganga is an application that enables a user to

 Configure – Prepare – Submit – Monitor

 jobs and applications using a variety of resources
The Ganga Mantra:

Configure once, run anywhere
Possible resources

- The **local machine** (interactive or in background)
- **Batch** systems (LSF, PBS, SGE, Condor)
- **Grid** systems (LCG, gLite, NorduGrid)
- **Workload management** systems (DIRAC, PanDA)
- Jobs look the same whether they run locally or on the Grid
Ganga Architecture
A job in Ganga is constructed from a set of building blocks, not all required for every job.
Ganga Usage in LHCb
Ganga Usage in LHCb

- In the last 3 months ~200 unique LHCb users
- Stably increasing trend of users over the last 3 years
- More users than originally expected physicists from the TDR
- TDR considers 140 users

>60 physicists use Ganga on average per week
Ganga installations

- Ganga reference installation at CERN
- Hence ~80% use the tool at CERN
- Several installations are at LHCb institutes
- ~20% of LHCb usage

Ganga LHCb sessions by week and domain

<table>
<thead>
<tr>
<th>Date</th>
<th>cern.ch</th>
<th>hep.phy.cam.ac.uk</th>
<th>ph.ed.ac.uk</th>
<th>physik.uni-dortmund.de</th>
<th>in2p3.fr</th>
<th>other domains</th>
</tr>
</thead>
<tbody>
<tr>
<td>14 Dec</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>28 Dec</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11 Jan</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25 Jan</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8 Feb</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22 Feb</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8 Mar</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Non CERN Ganga installations

- Several non-CERN installations used in LHCb
- Active UK installations (~50%)
- Followed by German (~20%) and French institutes (~11%)
LHCb Plug-ins
LHCb plugins

- LHCb specific application handlers
 - All LHCb applications are based on the Gaudi framework
 - Includes specialised splitters

- General purpose ROOT handler
 - used for Toy Monte-Carlos (ROOFit)

- LHCb specific submission backend
 - The only supported Grid backend is the DIRAC 3 WMS
 - Direct LCG submission of Gaudi jobs not supported
Data Selection

- Graphical bookkeeping browser in Ganga
- Allows selection of data sets from the official LHCb bookkeeping system
- Results in a list of input files, entered into an LHCbDataset object
LHCbDatasets

A list of files (PFNs or LFNs)

Can cache replica information for faster resubmission of jobs with the same input data

LHCbDataset (
cache_date = 'Wed Aug 29 23:49:04 2007' ,
files = [LHCbDataFile (
 name = 'LFN:/lhcb/production/DC06/phys-v2-lumi2/00001889/DST/0000/00001889_00000003_5.dst' ,
 replicas = ['IN2P3-disk', 'CERN-disk']
) ,
 ...]
)
LHCb Analysis Job

Gaudi based applications:

Example DaVinci (User analysis)

In [2]: app = DaVinci()

In [3]: print app
Out[3]: DaVinci(
 extraopts = None,
 package = 'Phys',
 configured = None,
 masterpackage = None,
 platform = 'slc4_ia32_gcc34',
 version = 'v22r1',
 setupProjectOptions = '',
 user_release_area = '/afs/cern.ch/user/a/andrew/cmtuser',
 optsfile = [File(name='/afs/cern.ch/user/a/andrew/cmtuser/DaVinci_v22r1/myopts2/myKstarMuMu_writeNtuple.opts',subdir='')]
Ganga Benefits

- **Configures environment**
 - sets up the environment in a separated area

- ** Parses options files to extract**
 - input data • output data • histograms

- **Determines Input Sandbox**
 - user libraries • preprocessed options files
Splitting and Merging

Easy splitting of jobs

```python
j.splitter=DiracSplitter(filePerJob=3)
print j.splitter
DiracSplitter (  
    filesPerJob = 3 ,  
    maxFiles = -1 ,  
    ignoremissing = False
)
```

DiracSplitter takes replica information into account (Guarantees subjobs with all data at one site)

Automatic merging of results

```python
j.merger=RootMerger(files=['myhisto.root'])
print j.merger
RootMerger (  
    files = ['histo.root'] ,  
    ignorefailed = False ,  
    overwrite = False
)
```
LHCb Supported Backends

- Submission to all local batch systems available
- Internal look-up for LFN to PFN resolution available
- Same job can run on local batch or Grid

Dirac Interface

- Specific to LHCb
- Only entry to the Grid for LHCb users
- Adds reliability and consistency
DIRAC WMS

- DIRAC uses the concept of Pilot Agents.
- Allows to build a robust and efficient Workload Management Systems (WMS)
- Job prioritisation in a central Task Queue
- Implementation of the community policies
DIRAC plugin

- DIRAC was originally designed as the LHCb production system.
 - So originally the backend allowed only submission of Gaudi Jobs

- DIRAC now supports all applications supported by Ganga, e.g. Gaudi, Root and the generic executable

```python
backend = Dirac(
    status = 'Completed',
    actualCE = 'LCG.Barcelona.es',
    statusInfo = 'Execution Complete',
    id = 904010,
    CPUPeriod = 86400
)
```

Read-only status information

Set CPU time needed for job
Output handling

- Outputs are automatically discovered for Gaudi applications

- Ganga distinguishes between
 - Sandbox data (returned with the job)
 - Output data (returned to some large storage area, e.g. CASTOR, or Grid SE)

- DIRAC returns large sandbox data to Grid storage automatically
Conclusions

- Ganga is a well established and accepted user interface for job submission to batch and grid systems in LHCb.
- Ganga now reaches all analysis users in LHCb.
- >60 users per week in LHCb use Ganga to perform their analysis.
- A job repository helps to organise the workflow of the physicist-user.
- Specialised LHCb plug-ins simplify the submission of complex jobs with support for easy set-up of LHCb applications, splitting and merging.
- The LHCb specific DIRAC plug-in allows submission of jobs to the DIRAC WMS.