ScotGrid:
Providing an Effective Distributed Tier-2 in the LHC Era

Sam Skipsey
David Ambrose-Griffith, Greig Cowan, Mike Kenyon, Orlando Richards
Phil Roffe, Graeme Stewart

Universities of Glasgow, Edinburgh and Durham
Itinerary

- Fabric management and infrastructure consideration.
- “Special cases” – Durham + ECDF
 - 2/3 is just a large minority?
- Experiment Production
 - A solved problem?
- User analysis optimisation.
- “Tier 2.5” - supporting local users locally.
Management and infrastructure

- Cfengine
- Ganglia
- Centralised nagios alerting.
- Shared login across Edinburgh, Glasgow, Durham

“Virtual control room”
- Extremely useful for instant discussion and problem resolution
“Local central” Services

• For our own reliability, and to balance load, ScotGrid runs its own:
 – WMS
 – Top-level BDII
 – VOMS server

• May add others, all at Glasgow

• Pro: more control, more choice for other sites

• Con: more management overhead, complexity
Durham – VMs abound

- All front-end service nodes run as VMWare-hosted virtual machines.
 - 2 Physical nodes – 8 cores, 16Gb each (+ UI)
 - Separate NFS server + master node
ECDF – special cases

- Central university resource – Grid share must play nicely with local jobs (and is not a majority user).
- VMEM limit special-cases.
- WN-TAR install – everything Grid sandboxed.
- Some handcrafting of “default” SGE jobmanager to support nonstandard queue configuration.
LHCb Jobtype changes

Cumulative Jobs by JobType
27 Weeks from Week 36 of 2008 to Week 11 of 2009

Total: 90,414, Average Rate: 0.01/s
LHCb usage across sites

Cumulative Jobs by Site
27 Weeks from Week 36 of 2008 to Week 11 of 2009

Total: 90,414, Average Rate: 0.01 /s
Glasgow is top UK ATLAS Tier-2
- Storage and fabric easily cope with production load with 2000 running jobs
- Production at Edinburgh is significant
- Durham should improve
 - Sometimes no jobs is hard to diagnose

<table>
<thead>
<tr>
<th>site</th>
<th>success</th>
<th>failure</th>
<th>success (walltime)</th>
<th>failure (walltime)</th>
<th>efficiency</th>
<th>efficiency (walltime)</th>
</tr>
</thead>
<tbody>
<tr>
<td>RAL-LCG</td>
<td>245787</td>
<td>74734</td>
<td>2830137434</td>
<td>820364357</td>
<td>76.7%</td>
<td>77.5%</td>
</tr>
<tr>
<td>UKI-SCOTGRID-GLASGOW</td>
<td>87376</td>
<td>16461</td>
<td>1859086649</td>
<td>70004125</td>
<td>84.1%</td>
<td>96.4%</td>
</tr>
<tr>
<td>UKI-LT2-OMUL</td>
<td>36035</td>
<td>4306</td>
<td>1034180037</td>
<td>55335363</td>
<td>89.3%</td>
<td>94.9%</td>
</tr>
<tr>
<td>UKI-LT2-RHUL</td>
<td>23813</td>
<td>1049</td>
<td>518662190</td>
<td>16846141</td>
<td>95.8%</td>
<td>96.5%</td>
</tr>
<tr>
<td>UKI-NORTHGRID-LANCS-HEP</td>
<td>13598</td>
<td>5548</td>
<td>348812689</td>
<td>47601881</td>
<td>71%</td>
<td>88%</td>
</tr>
<tr>
<td>UKI-NORTHGRID-MAN-HEP</td>
<td>17638</td>
<td>1471</td>
<td>740648861</td>
<td>15169211</td>
<td>92.3%</td>
<td>98%</td>
</tr>
<tr>
<td>UKI-NORTHGRID-LIV-HEP</td>
<td>13570</td>
<td>1835</td>
<td>425224890</td>
<td>21649533</td>
<td>88.1%</td>
<td>95.2%</td>
</tr>
<tr>
<td>UKI-NORTHGRID-SHEF-HEP</td>
<td>13081</td>
<td>203</td>
<td>266302242</td>
<td>3149928</td>
<td>96.5%</td>
<td>98.8%</td>
</tr>
<tr>
<td>UKI-SCOTGRID-EDF</td>
<td>9103</td>
<td>1421</td>
<td>135756242</td>
<td>7462699</td>
<td>86.5%</td>
<td>94.8%</td>
</tr>
<tr>
<td>UKI-SOUTHGRID-OX-HEP</td>
<td>7140</td>
<td>2638</td>
<td>191695448</td>
<td>26819988</td>
<td>73%</td>
<td>87.7%</td>
</tr>
<tr>
<td>UKI-SOUTHGRID-CAM-HEP</td>
<td>8483</td>
<td>514</td>
<td>155769938</td>
<td>5044015</td>
<td>94.3%</td>
<td>96.9%</td>
</tr>
<tr>
<td>UKI-LT2-IC-HEP</td>
<td>6045</td>
<td>279</td>
<td>134262189</td>
<td>3776010</td>
<td>95.6%</td>
<td>97.3%</td>
</tr>
<tr>
<td>UKI-SOUTHGRID-RALPP</td>
<td>4260</td>
<td>155</td>
<td>113936553</td>
<td>7742406</td>
<td>96.5%</td>
<td>93.6%</td>
</tr>
<tr>
<td>UKI-LT2-BRUNER</td>
<td>1798</td>
<td>264</td>
<td>56890157</td>
<td>1965882</td>
<td>87.2%</td>
<td>96.7%</td>
</tr>
<tr>
<td>UKI-SCOTGRID-DURHAM</td>
<td>1427</td>
<td>113</td>
<td>504168</td>
<td>211955</td>
<td>92.7%</td>
<td>96%</td>
</tr>
<tr>
<td>UKI-SOUTHGRID-BHAM-HEP</td>
<td>735</td>
<td>23</td>
<td>452986</td>
<td>172312</td>
<td>97%</td>
<td>72.4%</td>
</tr>
</tbody>
</table>

total: 489889 111219 8.812322693e+09 1105124926 81.5% 88.9%
User Analysis

- Even in 2008 we had not seen significant user analysis activity on the Tier-2
- We were 'early adopters' of the ATLAS Hammercloud test framework to prepare the clusters for the challenges of user analysis
- This framework sends a large number of realistic muon analysis jobs to clusters through ganga
 - Key point is the access of very large numbers of small AOD files with non-sequential access
HC038 – before optimisation

DN Transfer Successes
632 Minutes from 2008-12-02 08:00 to 2008-12-02 18:32 UTC

Maximum: 3,119, Minimum: 22.00, Average: 1,227, Current: 28.00
HC038 – load on services

Terrible event rate -
DPM head just can't cope
Splitting services

- DPM is clearly CPU bound
 - Load on dpm daemon was > 100% (no iowait)
- DPM services are CPU bound
 - Split these onto new node (high CPU, poor disk)
- MySQL back-end is probably IO-bound
 - Leave on “old” node, which has fast disk
HC135 – after split

DN Transfer Successes
720 Minutes from 2009-02-10 15:00 to 2009-02-11 03:00 UTC

Maximum: 5,924, Minimum: 42.00, Average: 1,564, Current: 42.00
HC135 – load and stats

Significantly better rate + efficiency.

Limiting IOwait on MySQL node.
MySQL indexing

• Enable slow-queries log.
• Three common slow queries on unindexed columns in dpm_db tables.
• Add indices:
 – create index pfn_lifetime on dpm_get_filereq (pfn(255), lifetime);
 – create index status_idx on dpm_put_filereq(status);
 – create index stime_idx on dpm_req(stime);
HC193 – after optimisation

DN Transfer Successes
660 Minutes from 2009-03-16 20:32 to 2009-03-17 07:32 UTC

Maximum: 6,825 , Minimum: 32.00 , Average: 1,453 , Current: 40.00
HC193 – load and stats

Efficiency per job lower – but we are actually processing more concurrent jobs here (cluster was empty before test)
Next steps

- non-rfio access
 - dpm-xrootd, “pure” xrootd
 - (Eliminates some of the authentication overhead of rfio + gsiftp)

- Network infrastructure improvements
 - disk servers are each Gigabit each
 - channel bonding? 10Gigabit? Infiniband?
Conclusions

• Communication is essential!
• Be prepared to be flexible.
• Local copies of “central” services
 – Split load
 – But add overhead.
This is where we came in...
DPM is clearly CPU bound.
Virtual Machine, so assign more cores
Possibly even dynamically?
Glasgow Tier 2.5

Interface local (PPE) resources with Grid.
Local-level access for data, job preparation
ScotGrid's DPM ATLAS datasets available via RFIO, XROOT
gLite 3.1 UI available on all Linux desktops?
Removes need for local users to map to generic pool username (e.g. gla048 -> sskipsey).